
When memory management goes bad...

Author: ReWolf
Contact: rewolf [a t] rewolf.pl

http://rewolf.pl

http://rewolf.pl/

1. Introduction

Let's imagine some simple garbage collection (GC) mechanism based on a singly-linked list.
It will be as simple as possible, so it will remember head of the list and a number of stored
elements. Each element will contain size of the allocated memory, allocated buffer and of course
address of the next element. Actually it will be pseudo-GC, because there won't be any automatic
memory freeing, so garbage collection will be triggered manually under some circumstances. GC
interface will provide three main functions for memory operations:

– gc_alloc()
– gc_realloc()
– gc_free()

and two functions for GC maintaining:

– gc_getNumberOfElements()
– gc_freeGCMemory()

Usage of such GC is very intuitive, at the beginning a developer will call
gc_getNumberOfElements() and remember returned value (I'll call it gc_start), then he can allocate
(reallocate) memory with gc_alloc() (gc_realloc()) as many times as he want and even if
sometimes he will not use gc_free() (sic!), nothing very bad will happen (but it could ;)). After
finishing particular part of code gc_freeGCMemory() should be called to free remained memory. I'll
show it on a simple pseudo-code:

...
int gc_start = gc_getNumberOfElements();
...
//processing some complicated commands, with many
//memory allocations
...
gc_freeGCMemory(gc_start);
...

Now you can imagine what can happen if someone will not predict how many memory allocations
a specific part of code will use, and he will only rely on the gc_freeGCMemory(). I'm writing about
this, because I found...

2. Real life example...

Yes, there is at least one example of such mechanism and it is implemented in application
that is rather commonly used by windows users: cmd.exe.

Few months ago I've encountered a strange behavior when I wanted to list some big collection of
files and execute some command on every single file. I used for this task 'for' command similar to
this:

for /R c:\ %c in (*.*) do echo %c >> cmd_ptc.log

After few hours of processing I get a very disturbing message:

“Not enough storage is available to process this command.”

Actually it is system error code 0x8 (ERROR_NOT_ENOUGH_MEMORY) translated by
FormatMessage API. I've done some more tests looking at an application memory usage in Process
Explorer:

It can eat all memory available for the process (and it is not memory allocated for a screen buffer as
some of you may think). I decided to check why cmd.exe uses such amount of memory, and if it
will be possible fix it, because I'm used to automate some tasks with it and I'm still not convinced to
PowerShell. Question 'why it uses such amount of memory?' was already answered (at least
partially, because besides this carelessly used pseudo-GC, I found also two things that looks like
obvious bugs), now I can start fixing.

3. Cmd.exe internals

Cmd.exe uses a pseudo-GC mechanism described in the first section, probably to avoid
some accidental memory leaks during processing of complicated commands. I didn't reviewed all
the code, but only fragments related to processing of 'for' command. From what I saw, I can say that
most memory allocations are freed after finishing each command, for example:

c:\>echo “Hello World”
* enable GC
* do operations required by requested command
* print result
“Hello World”
* free all GC memory allocated since 'enable GC'
c:\>

All my research were done on the cmd.exe taken from Windows Vista Home Premium x86 SP2
Eng:

md5 : 74f26fc01b180d4a99a168ed69c30a53
file size : 318976 bytes
file version: 6.0.6001.18000
file date : 2008-01-21 04:23

In further paragraphs I'll refer to offsets (raw, rva) in this specific cmd.exe version, but all changes
can be probably easily applied to other versions, because I'll be also referring to names of the
functions taken from PDB symbols.

GC related functions from cmd.exe:

 - mkstr() ↔ gc_alloc():

wchar_t *__stdcall mkstr(unsigned int a1);
@ .text:4AD01E3D

a1 : the number of bytes to be allocated
return: address of allocated memory buffer

 - resize() ↔ gc_realloc():

wchar_t *__stdcall resize(wchar_t *a1, unsigned int a2);
@ .text:4AD020F1

a1 : address of memory buffer that will be resized
a2 : new buffer size
return: address of new memory buffer

 - FreeStr() ↔ gc_free():

void __stdcall FreeStr(wchar_t *a1);
@ .text:4AD01773

a1 : address of memory buffer that will be freed

 - DCount ↔ gc_getNumberOfElements():

DWORD DCount;
@ .data:4AD240BC

 - FreeStack() ↔ gc_freeGCMemory():

void __stdcall FreeStack(unsigned int a1);
@ .text:4AD03031

a1 : (gc_getNumberOfElements() - a1) number of elements will be
 removed (freed) from the list

To determine possible leaks I've wrote a simple tool that monitors all heap allocations, and prints all
active memory regions (not freed) sorted by: number of allocations, return address and overall size
of allocated memory for each return address. There were of course some 'hacks' to show return
addresses of mkstr() and resize() functions instead of HeapAlloc() and HeapReAlloc(). A sample
output produced by this tool looks like this:

An interpretation of above is rather simple, first column represent return address, second is number
of separate allocations, and third is size of allocated memory. With this tool I was able to determine
few places where I can start my research. Further analysis under OllyDbg and IDA revealed me
exact names of functions with problematic allocations:

– _FindFixAndRun @ 0x4AD021F7
– _ECWork @ 0x4AD04292
– _FLoopWork @ 0x4AD10C04

– _FRecurseWork @ 0x4AD1B855

In the next paragraphs I'll describe all modifications that should be done in each of mentioned
functions. Most patches will be illustrated with pseudo-C listings, with some references to an
assembly to show what exactly was patched. Showing all modification only on an assembly listing
would probably mess all ideas and lecture wouldn't be as straightforward as it is now.

4. FindFixAndRun

This function is responsible for parsing and verifying command and calling specific function
for each batch command. Offsets to functions are obtained through FindCmd() (@ 0x4AD023B1)
and GetFuncPtr() (@ 0x4AD03271). FindFixAndRun() can cause two leaks, first is easy to fix,
second is a bit more complicated. The easiest one is caused by call to GetTitle() (@ 0x4AD02329)
function:

v1 = GetTitle(a1); //push ebx
//call _GetTitle@4

if (v1) //test eax, eax
//jz short loc_4AD019C0

SetConTitle(v1); //push eax
//call _SetConTitle@4

GetTitle() allocates memory with mkstr() function and it should be freed if we don't need it
anymore. The variable v1 is used only in this fragment of function, so it can be freed after call to
SetConTitle():

v1 = GetTitle(a1); //push ebx
//call _GetTitle@4

if (v1) //test eax, eax
{ //jz short loc_4AD019C0

v2 = v1; //push eax
SetConTitle(v1); //push eax

//call _SetConTitle@4
FreeStr(v2); //call _FreeStr@4

}

As you can see, I'm putting eax on the stack, before call to SetConTitle() and after call, I'm just
calling FreeStr(), which takes this eax from the stack.

Note: Of course in the executable, I cannot just insert instruction like this, so I've to put an
extra jump after first push and put rest of the code in some free space at the end of code
section, but it is rather obvious and I'll silently skip such details. All modifications will be
listed in details at the end of this article, there will be also available a patched binary for
download.

Second leak is caused by call to TokStr() (@ 0x4AD01F27), which calls gresize() or gmkstr()
functions. Those functions are similar to resize() and mkstr(), but in case of memory allocation
failure they are calling Abort() procedure. To remove this leak I need to remember a value returned
by TokStr(), and call FreeStr() (with this remembered value) at the end of the function, but only for
the paths of execution that contains call to TokStr(). Sounds complex, but it is doable. There is also
an easier solution, I can add variable to the stack frame and initialize it with zero, then I can assign
to this variable value returned by TokStr() and call FreeStr() just before function end. FreeStr()
handles zero as an argument, and just returns without any actions. The easiest way came to my mind
after I've done this patch, but I'm utilizing similar method in FLoopWork() fix. To design this patch
I've used 'graph view' in IDA. At first I've set different color for nodes that belongs to chosen

execution path, then I've started grouping some nodes to simplify function graph.

– red node contains call to TokStr()
– gray nodes belongs to execution path of my interest
– white nodes (those at the bottom) can be grouped to simplify view
– blue node is the function return
– yellow node can be reached from white and gray nodes and it needs special handling

I'll remember result from the TokStr() on the stack with just simple push:

Original code Patched code
 push 2
 lea eax, [ebp+var_224]
 push eax
 push dword ptr [ebx+3Ch]
 call _TokStr@12
 mov esi, eax

 cmp edi, 0Ah

 push 2
 lea eax, [ebp+var_224]
 push eax
 push dword ptr [ebx+3Ch]
 call _TokStr@12
 mov esi, eax
 push eax
 cmp edi, 0Ah

Now I need to add call to FreeStr() at the places where gray nodes connects with blue node and
where gray node connects yellow node. There are two such places for gray-blue and one gray-
yellow:

Original code Patched code
0x4AD019D1 (gray-blue)

 mov dword ptr [ebp-4], -2
 call sub_4AD032D9

 mov dword ptr [ebp-4], -2
 call sub_4AD032D9

 mov eax, [ebp-440h]
 call __SEH_epilog4_GS
 retn 4

 call _FreeStr@4
 mov eax, [ebp-440h]
 call __SEH_epilog4_GS
 retn 4

0x4AD16B6E (gray-blue)

 call _PutStdErr
 pop ecx
 pop ecx
 xor eax, eax
 inc eax
 mov _LastRetCode, eax

 call __SEH_epilog4_GS
 retn 4

 call _PutStdErr
 pop ecx
 pop ecx
 xor eax, eax
 inc eax
 mov _LastRetCode, eax
 xchg eax, [esp]
 push eax
 call _FreeStr@4
 pop eax
 call __SEH_epilog4_GS
 retn 4

0x4AD0229A (gray-yellow)

 push esi
 push edi
 call _CheckHelpSwitch@8
 test al, al
 jnz loc_4AD06E11
 ...
loc_4AD06E11:

 xor eax, eax
 inc eax

 push esi
 push edi
 call _CheckHelpSwitch@8
 test al, al
 jnz loc_4AD233B8
 ...
loc_4AD233B8:
 call _FreeStr@4
 xor eax, eax
 inc eax

After those changes function shouldn't leak memory anymore.

5. FLoopWork

Changes in this function will be slightly different than in FindFixAndRun() because they
will fix one obvious bug and one not obvious bug which I'm not quite sure if it is really bug or just
some weird design (but this patch drastically decreases memory usage). I've also removed two
inlined wcslen() to get some more free space in the code section for a future use (finally I didn't
used this free space, but I left it in the executable).

Let's start from the obvious one. Below pseudo-code shows some very basic way to reduce
a number of the memory allocations in some loop:

 baseStr = "base";
 baseSize = strlen(baseStr) + 1;
 curSize = baseSize;
 buffer = alloc(curSize);
 strcpy(buffer, baseStr);
 do
 {
 addStr = getNextStr(); //returns next string
 addSize = strlen(addStr);
 if (curSize < baseSize + addSize)
 {
 curSize = baseSize + addSize;
 buffer = realloc(buffer, curSize);

 }
 strcat(buffer, addStr);
 printf(buffer);
 buffer[baseSize - 1] = 0;
 }
 while (some_condition);

The idea is very simple, memory is reallocated only if a bigger buffer is needed, else program will
use already allocated buffer. Almost identical mechanism is used in FLoopWork(), except one small
thing that makes all 'optimization' useless. Apparently someone wrote this code in hurry, because in
cmd.exe condition that checks if there is sufficient memory looks like this:

 if (curSize < curSize + addSize)
 {
 curSize = curSize + addSize;
 buffer = realloc(buffer, curSize);
 }

As you can see, this condition is always true, and memory is reallocated on every loop pass. Beside
this, curSize is increased every-time with addSize value, which means that at the end of the loop
buffer will be large enough to hold not only baseStr+addStr, but baseStr and all addStr generated
during execution of this loop. In below table you can find patches that I've done to remove this bug:

Original code Patched code

0x4AD10C06: - added one local variable to the stack frame

 push ebp
 mov ebp, esp
 sub esp, 280h

 push ebp
 mov ebp, esp
 sub esp, 284h

0x4AD11427: - removed one inlined call to wcslen()
 - assigning length of given string to the added variable [ebp-284h]

loc_4AD11427: ;\
 mov dx, [ecx] ; \
 inc ecx ; |
 inc ecx ; | inlined
 test dx, dx ; | wcslen()
 jnz loc_4AD11427 ; |
 sub ecx, esi ; /
 sar ecx, 1 ;/
 jz loc_4AD106E8 ; > Abort()
 lea edx, [eax+2]
loc_4AD1143E: ;\
 mov cx, [eax] ; \
 inc eax ; | second
 inc eax ; | inlined
 test cx, cx ; | wcslen()
 jnz loc_4AD1143E ; |
 sub eax, edx ; /
 sar eax, 1 ;/
 lea ebx, [eax+1]
 lea eax, [ebx+ebx]
 push eax
 call _mkstr@4

loc_4AD11427: ;\
 mov dx, [ecx] ; \
 inc ecx ; |
 inc ecx ; | inlined
 test dx, dx ; | wcslen()
 jnz loc_4AD11427 ; |
 sub ecx, esi ; /
 sar ecx, 1 ;/
 jz loc_4AD106E8 ; > Abort()
 mov eax, ecx
 mov [ebp-284h], ecx

 lea ebx, [eax+1]
 lea eax, [ebx+ebx]
 push eax
 call _mkstr@4

0x4AD11318: - removed one inlined call to wcslen()
 - using remembered length of string from [ebp-284h]

loc_4AD11318: ;\
 mov cx, [eax] ; \
 inc eax ; |
 inc eax ; | inlined
 test cx, cx ; | wcslen()
 jnz loc_4AD11318 ; |
 sub eax, edx ; /
 sar eax, 1 ;/
 add eax, ebx

 cmp ebx, eax
 jnb loc_4AD11361
 lea eax, [ebp-228h]
 lea edx, [eax+2]
loc_4AD11335: ;\
 mov cx, [eax] ; \
 inc eax ; | second
 inc eax ; | inlined
 test cx, cx ; | wcslen()
 jnz loc_4AD11335 ; |
 sub eax, edx ; /
 sar eax, 1 ;/
 add ebx, eax
 test edi, edi
 lea eax, [ebx+ebx]
 push eax
 jz loc_4AD143ED
 push edi
 call _resize@8

loc_4AD11318: ;\
 mov cx, [eax] ; \
 inc eax ; |
 inc eax ; | inlined
 test cx, cx ; | wcslen()
 jnz loc_4AD11318 ; |
 sub eax, edx ; /
 sar eax, 1 ;/
 mov ecx, eax
 add eax, [ebp-284h]
 inc eax
 cmp ebx, eax
 jnb loc_4AD11361

 add ebx, ecx
 test edi, edi
 lea eax, [ebx+ebx]
 push eax
 jz loc_4AD143ED
 push edi
 call _resize@8

Now it is time for the second problem in FLoopWork(). For better understanding I'll first describe
ForFree() (@ 0x4AD09C5A) function:

 int ForFree(int a1)
 {
 if (a1)
 FreeStack(a1);
 else
 a1 = DCount;
 return a1;
 }

Basically it is just a helper for the FreeStack(), the only difference is that it will return the DCount
(a number of allocated memory regions) value if passed argument is equal to zero. It is very
convenient to use it in any kind of loops, for example:

 int baseMR = ForFree(0);
 do
 {
 complicatedFunction01(x, y, z);
 complicatedFunction02(x, y, z);
 baseMR = ForFree(baseMR);
 }
 while (some_condition)

Such construction guarantee that all memory allocated during each iteration will be freed. Of course

it could be done without defining ForFree(), but as I'm not clairvoyant, I'll not try to explain why it
is done in the separate function. Let's back to the merits of the case, the main reason why I'm
talking about it is the way how ForFree() is used in cmd.exe:

 int baseMR = 0;
 do
 {
 complicatedFunction01(x, y, z);
 complicatedFunction02(x, y, z);
 baseMR = ForFree(baseMR);
 }
 while (some_condition)

This relatively small change causes that memory allocated on the first iteration will not be freed.
ForFree() is used four times in cmd.exe (once in FParseWork(), once in eFor() and twice in
FLoopWork()) , and in all four occurrences it is used in this 'buggy' way. I've patched only one
occurrence in FLoopWork() and it was sufficient to reduce memory usage to the acceptable level.
Proposed patch adds ForFree(0) at the beginning of every iteration, it could be done better, but it
was done as a proof of concept rather than real solution for mass usage.

Original code Patched code
0x4AD10D79

 call _ffirst@16
 test al, al
 jz loc_4AD10D29

 mov esi, [ebp+var_270]
 mov eax, [ebp+lpFileName]

 call _ffirst@16
 test al, al
 jz loc_4AD10D29
 push 0
 call _ForFree@4
 mov [ebp+var_25C], eax
 mov esi, [ebp+var_270]
 mov eax, [ebp+lpFileName]

6. ECWork and FRecurseWork

Patches in those functions are very similar to modifications in FindFixAndRun(), there are
some memory buffers allocated through GetTitile(), mkstr() or resize() and I'm just freeing those
buffers, so I'll only put all patches together in the table, just for review.

Original code Patched code
0x4AD04322 (ECWork)

 call sub_4AD046B8

 mov eax, [ebp+var_230]
 call __SEH_epilog4_GS
 retn 0Ch

 call sub_4AD046B8
 push ebx
 call _FreeStr@4
 mov eax, [ebp+var_230]
 call __SEH_epilog4_GS
 retn 0Ch

0x4AD07ECD (ECWork)

 call sub_4AD07F13

 mov eax, [ebp+var_230]
 call __SEH_epilog4_GS

 call sub_4AD07F13
 push ebx
 call _FreeStr@4
 mov eax, [ebp+var_230]
 call __SEH_epilog4_GS

 retn 0Ch retn 0Ch

0x4AD10659 (ECWork)

 push eax
 call _PutStdErr

 add esp, 0Ch
 xor eax, eax
 inc eax
 call __SEH_epilog4_GS
 retn 0Ch

 push eax
 call _PutStdErr
 push ebx
 call _FreeStr@4
 add esp, 0Ch
 xor eax, eax
 inc eax
 call __SEH_epilog4_GS
 retn 0Ch

0x4AD153A5 (ECWork)

 pop ecx
 pop ecx

 xor eax, eax
 inc eax
 call __SEH_epilog4_GS
 retn 0Ch

 pop ecx
 pop ecx
 push ebx
 call _FreeStr@4
 xor eax, eax
 inc eax
 call __SEH_epilog4_GS
 retn 0Ch

0x4AD1063F (ECWork)

 cmp eax, 3
 jz loc_4AD15396
 ...
loc_4AD15396:

 mov eax, edx ; edx = 1

 call __SEH_epilog4_GS
 retn 0Ch

 cmp eax, 3
 jz loc_4AD23367
 ...
loc_4AD23367:
 push ebx
 call _FreeStr@4
 xor eax, eax
 inc eax
 call __SEH_epilog4_GS
 retn 0Ch

0x4AD1538C (ECWork)

 call _ChangeDir2@8

 call __SEH_epilog4_GS
 retn 0Ch

 call _ChangeDir2@8
 push eax
 push ebx
 call _FreeStr@4
 pop eax
 call __SEH_epilog4_GS
 retn 0Ch

0x4AD1B959 (FRecurseWork)

 call _FLoopWork@20
 mov edi, eax

 mov eax, [ebp-260h]
 lea ecx, [eax+2]

 call _FLoopWork@20
 mov edi, eax
 pusha
 push dword ptr [ebp-25Ch]
 call _FreeStr@4
 popa
 mov eax, [ebp-260h]
 lea ecx, [eax+2]

7. Conclusion

There are still many functions that can be 'fixed' in the same manner, but it was not the point
of this research. I've achieved my goals - reducing memory usage during execution of the 'for'

command. I didn't reported those 'leaks' to Microsoft, because I do not consider those bugs as
serious and to be honest I don't believe that someone will care about it. From the quick overview I
can confirm that described behavior occurs in probably all x86 versions of cmd.exe (I've looked at:
vista sp2, xp sp2, xp sp3 and win7). Below you can compare two memory usage graphs generated
during execution of this command:

for /R c:\windows\winsxs %c in (*.*) do echo %c

8. Timeline

– Feb 2009 – discovered problem
– Jul 2009 – researched and patched cmd.exe
– Mar 2010 – finished this paper

Original cmd.exe (maximal memory usage: 163,3 MB)

Patched cmd.exe (maximal memory usage: 12,3 MB)

