
--
| Author: ReWolf |
| e-mail: rewolf@rewolf.pl |
www : http://rewolf.pl

HACKER CHALLENGE 2007 Phase 1 Report
1. Background
 In this report I will describe protection scheme of Hacker
Challenge first phase binary. To defeat protection we have to pass
through four layers:

 - unpack custom PE encrypter (easy)
 - generate keyfile "password.txt"
 - reverse engineer the mathematical formula (objective 1)
 - patch executable to extend some functionality (objective 2)

Also we have to patch some CRC checks, and disable some anti-
debugging code (GetTickCount, IsDebuggerPresent).

2. Attack Narrative
- Removing cutsom PE encrypter

 Target is protected with custom PE encrypter, it doesn't
encrypt all sections of executable, it not support Import Table
protection, there is no stolen bytes or code redirection. Just
simple encryption layer. Each byte of protected section is
decrypted with algorithm like this:

 add al, 10h
 xor al, 53h
 ror al, 0BDh
 add al, 0AFh
 sub al, 1Fh
 add al, 0A0h
 add al, 0Fh

In fact there is six similar decryption routines (generated with
some simple polymorphic engine). Selection of algorithm depends on
section name:

'.tex', 'CODE':
 add al, 10h
 xor al, 53h
 ror al, 0BDh
 add al, 0AFh
 sub al, 1Fh
 add al, 0A0h

 add al, 0Fh

'.dat', 'DATA':
 add al, 6Dh
 add al, 88h
 rol al, 0D5h
 add al, 1Bh
 add al, cl
 sub al, 0BBh
 add al, cl
 rol al, 5Dh
 sub al, cl
 ror al, 0D7h

'BSS': it's common name for unitialized data section, for this
section there is fake empty decryption routine, that should never
execute

'.ida': fake, empty decryption routine
'.eda': fake, empty decryption routine
'.rsr': this function is a bit different than others. It
traversing resources tree, and decrypts only specified resources
(basically it should skip manifest and first icon group)

 sub al, 0DAh
 sub al, cl
 add al, cl
 add al, 4Ch

After all decryptions we're moved to original enrypoint of
protected application:

 mov edx, original_entry_point
 jmp edx

To aggravate tracing we can see many junks in loader. It's rather
simple junks:

 jmp $+XX

where XX is the random (I thought) value.

To remove this layer I've traced loader (in OllyDbg) to place
where it jumps to original entry point. Next I've dumped memory of
the process with LordPE, and fixed imports with ImportREC. All
tasks takes about one minute... It's definitely not so hard
protection scheme.

- Generating keyfile "password.txt"

 When we remove PE encrypter we have to generate password.txt

file. To catch moment when protected executable access
password.txt, we have to set breakpoint on files access functions:
 - CreateFileA
 - CreateFileW
 - ReadFile
We should break on CreateFileW:

Now we have to 'step over' some code until we will back to
function that called CreateFileW. In fact we have to back to:
 .text:00405214 call std::_Fiopen(char const *,int,int)

How do I know that ? There is two ways to get to this place:

 - It's executable compiled with VS2k5, this fact implies that
all code written by user is at the beginning of the code section.
Rest of the code comes from libraries (exception for this is STL
library). So we have to trace until we reach quite low address
(relative to size of the whole code section). In this case most of
all code below 0040769A is written by user, because IDA Pro marked
almost all code after that point as 'library' code (FLIRT).
 - second method is more common (I think). It bases on IDA Pro
signatures and it's variant of the first method but static.

 Next step is to find place where file password.txt is read.
We should break on ReadFile and in the same way as with
CreateFileW we will reach:
 .text:0040648D call edx ; read one byte from file
 .text:0040648F nop ; <- we should be here after
 ReadFile

Bytes from file are read until the end of file, or until 0x20
(space) character.

Read string is converted to integer value:

 .text:00406FEB push edx ; char *
 .text:00406FEC call j__atol

and forwarded to this algorithm:

 .text:00406FF1 mov ecx, eax ; coverted value from file
 .text:00406FF3 mov eax, 30C30C31h

 .text:00406FF8 imul ecx
 .text:00406FFA sar edx, 3
 .text:00406FFD mov eax, edx
 .text:00406FFF shr eax, 1Fh
 .text:00407002 add eax, edx
 .text:00407004 imul eax, 2Ah ; 42
 .text:00407007 mov edx, ecx
 .text:00407009 add esp, 4
 .text:0040700C sub edx, eax
 .text:0040700E jnz short _bad_password
 .text:00407010 test ecx, ecx ; password cannot be '0'
 .text:00407012 jz short _bad_password

I have coded simple brute force to get proper value:

//--
 #include <windows.h>
 #include <cstdio>
 bool __stdcall _count(DWORD val)
 {
 DWORD _ret = 0;
 __asm
 {
 MOV ECX, val
 MOV EAX, 0x30C30C31
 IMUL ECX
 SAR EDX, 3
 MOV EAX, EDX
 SHR EAX, 0x1F
 ADD EAX, EDX
 IMUL EAX, EAX, 0x2A
 MOV EDX, ECX
 SUB EDX, EAX
 mov _ret, edx
 }
 return _ret;
 }
 int main()
 {
 DWORD i = 1;
 while (_count(i)) i++;
 printf("%d\n", i);
 return 0;
 }
//--

So password.txt should contain value "42".

- reverse engineer the mathematical formula (objective 1)

 To locate code correlated with mathematical formula we have to
set breakpoints on all 'user' (located near the beginning of the
code section) functions containing FPU operations. Actually there

are only three possibilities:

 * sub_401090
 * sub_401150
 * sub_401290
When we run program, it will stop at sub_401290 function. It's
quite easy piece of code:

 .text:00401290 sub_401290 proc near
 .text:00401290
 .text:00401290 var_4 = dword ptr -4
 .text:00401290
 .text:00401290 push ecx
 .text:00401291 push ebx
 .text:00401292 push esi
 .text:00401293 push edi
 .text:00401294 mov edi, ds:GetTickCount ||--------------
 .text:0040129A mov esi, ecx || ANTI-DEBUG
 .text:0040129C call edi ; GetTickCount ||
 .text:0040129E mov ebx, eax ||
 .text:004012A0 call sub_4016E0 ||
 .text:004012A5 test al, al || for further
 .text:004012A7 jz short loc_4012B0 || info look
 .text:004012A9 sub dword_42306C, 1 || below
 .text:004012B0 ||
 .text:004012B0 loc_4012B0: ||
 .text:004012B0 call ds:IsDebuggerPresent ||
 .text:004012B6 test eax, eax ||
 .text:004012B8 jz short loc_4012C1 ||
 .text:004012BA add dword_423070, 1 ||
 .text:004012C1 ||
 .text:004012C1 loc_4012C1: ||
 .text:004012C1 call edi ; GetTickCount ||
 .text:004012C3 sub eax, ebx ||
 .text:004012C5 cmp eax, 7D0h ||
 .text:004012CA jbe short loc_4012D8 ||
 .text:004012CC fld ds:dbl_41E228 ; pi || ANTI-DEBUG
 .text:004012D2 fstp dbl_4248C0 ||--------------
 .text:004012D8
 .text:004012D8 loc_4012D8:
 .text:004012D8 mov eax, [esi+0C0h]
 .text:004012DE fild dword_423068 ; 495
 .text:004012E4 add eax, [esi+0BCh]
 .text:004012EA pop edi
 .text:004012EB add eax, [esi+0B8h]
 .text:004012F1 mov ecx, eax
 .text:004012F3 imul ecx, eax
 .text:004012F6 mov [esp+0Ch+var_4], eax
 .text:004012FA fild [esp+0Ch+var_4]
 .text:004012FE mov [esp+0Ch+var_4], ecx
 .text:00401302 fmul ds:dbl_41E220 ; 0.0008267
 .text:00401308 fsubr ds:dbl_41E218 ; 1.10938
 .text:0040130E fild [esp+0Ch+var_4]
 .text:00401312 fmul ds:dbl_41E210 ; 0.0000016
 .text:00401318 faddp st(1), st
 .text:0040131A fild dword ptr [esi+30h]

 .text:0040131D fmul ds:dbl_41E208 ; 0.0002574
 .text:00401323 fsubp st(1), st
 .text:00401325 fdivp st(1), st
 .text:00401327 fadd dbl_4248C0 ; 0.0
 .text:0040132D fsub ds:dbl_41E1B8 ; 450
 .text:00401333 fst qword ptr [esi+98h]
 .text:00401339 mov edx, dword_423070
 .text:0040133F imul edx, dword_42306C
 .text:00401346 mov [esp+0Ch+var_4], edx
 .text:0040134A fild [esp+0Ch+var_4]
 .text:0040134E fdivp st(1), st
 .text:00401350 fmul qword ptr [esi+28h]
 .text:00401353 fst qword ptr [esi+0A8h]
 .text:00401359 fsubr qword ptr [esi+28h]
 .text:0040135C fstp qword ptr [esi+0A0h]
 .text:00401362 pop esi
 .text:00401363 pop ebx
 .text:00401364 pop ecx
 .text:00401365 retn
 .text:00401365 sub_401290 endp

ANTI-DEBUG:

In this function we have three anti-debug methods:
 - GetTickCount <- actually it is anti-trace method, it count
 execution time between two GetTickCount calls:
 .text:0040129C call edi ; GetTickCount
 ...
 .text:004012C1 call edi ; GetTickCount

 If it takes to long we can suspect that
 someone tracing our program:

 .text:004012C3 sub eax, ebx
 .text:004012C5 cmp eax, 7D0h

 - sub_4016E0 <- this function is similar to IsDebuggerPresent
 - IsDebuggerPresent <- standard Windows API to detect debugger
If program detects that it is debugged it will not stop execution
(it's usual behaviour in commercial applications), instead of nice
MessageBox with "Debugger detected" info program will modify some
values used to generate output:

 .text:004012A9 sub dword_42306C, 1
 ...
 .text:004012BA add dword_423070, 1
 ...
 .text:004012CC fld ds:dbl_41E228 ; pi
 .text:004012D2 fstp dbl_4248C0 ; 0.0

I will not describe step by step how to get mathematical formula
because it is quite easy to do it only by looking on that
function. I can only give a few hints:

 - .text:004012DE fild dword_423068 ; 495
 this is initial instruction

 - .text:00401333 fst qword ptr [esi+98h]
 this is final instruction (we have 10.9319 in ST0)
In my opinion there is one imprecision in the formula, because in
one place we have to add 0.0, it is global value. In my formula I
have skipped this + 0.0. So my formula is:
result = (g1 / (g3 - (p1+p2+p3) * g2 + (p1+p2+p3)*(p1+p2+p3)*g4 -
p4 * g5)) - g6;
and with that +0.0 it could look like this:
result = (g1 / (g3 - (p1+p2+p3) * g2 + (p1+p2+p3)*(p1+p2+p3)*g4 -
p4 * g5)) + g7 - g6;
where g7 = 0.0

Why I have skipped this value ? I have tracked places where this
value is used or changed. If I'm correct this value is changed to
3.14 (pi) only if we have attached debugger or when memory CRC
check fail. At this moment I can mention that in this executable
we have two functions that calculates memory checksum (not
standard CRC):
 - sub_401700
 - sub_401740

- patch executable to extend some functionality (objective 2)

 This stage is also quite easy. We have to patch binary to
remove 210.5 limit on eighth field in data.txt file. How we can
achieve this? I have found limit value in .data section:
 .rdata:0041E4D8 dbl_41E4D8 dq 2.105e2 ; DATA XREF: _main+3C0#r

As we can see, this value is referenced from _main+3C0:
 .text:004072F0 fld ds:dbl_41E4D8 ; 210.5
 .text:004072F6 fld [ebp+68h+var_98]
 .text:004072F9 add esp, 28h
 .text:004072FC fcom st(1)
 .text:004072FE fnstsw ax
 .text:00407300 test ah, 41h
 .text:00407303 jnz short loc_40730D

To skip 210.5 limit we should patch conditional jump at .text:
00407303 to unconditional jump.

3. Time to break
 - unpack custom PE encrypter (easy)

As I mentioned earlier this was the easiest part of
protection.
time to remove encrypter: about 1 minute
I have worked on unpackers for 1,5 year in AV company, also I
have written my own protectors (search at openrce.org) so
maybe I am not so representative in this area.

 - generate keyfile "password.txt"
time to generate file: about 1,5 hour
In this 1,5 hour I have also done overall analysis of
executable

 - reverse engineer the mathematical formula (objective 1)
time to break: about 1,5 hour
30 minutes to point how to find proper function, and 1 hour to
write formula and check it

 - patch executable to extend some functionality (objective 2)
time to break: 20 minutes

Developed tools:
 - brute force for password.txt, it was 15 minutes
Internet research: 0%
4. Tools used
 - OllyDbg - x86 assembly level debugger, used to unpacking and
 analysis
 - LordPE - memory dumper, used to dump decrypted executable from
 memory
 - ImportREC - tool used to rebuild imports structure, it was not
 required this time, because imports were not
 encrypted, but I didn't even checked ;-)
 - IDA Pro - most advanced disassembler, used to overall analysis
 - Visual Studio - windows C/C++ (not only) compiler, used to
 compile brute force
 - notepad - standard windows notepad, used to write some
 conclusions
 - total commander - file manager with nice F3 viewer (Lister)
5. Conclusion
 Today writing effective protection is not easy task. First of
all to improve this protection we should develop more complicated

encryption layer. Executable protector should encrypt imports,
move some of the application code to loader, morph parts of
application, add some virtualization layer etc... Take a look on
commercial protectors like Armadillo, ASProtect, SafeCast or
Themida. Of course all of this can be broken, but the effort to do
this is sometimes higher than profits. Code responsible for
mathematical formula should be at least obfuscated or even
virtualized. Overall difficulty of whole protection I'm evaluating
as easy.

