| Author: ReWolf |
| e-mail: rewolf@rewolf.pl |
| www : http://rewolf.pl |

HACKER CHALLENGE 2007 Phase 3 Report
1. Attack Narrative

Executable is partially encrypted and contains some anti-debug
and anti-trace stuff. At first I will describe how to remove
encryption and patch executable, so we can debug it easily. Next
I will show how to calculate password and where it should be
placed. Finally I will describe the way of achieving both
objectives.

- Anti-debug
In executable we have several anti-debugging, anti-tracing and
anti-patching tricks:
1. IsDebuggerPresent - one of the basics checks, it's easy to

bypass manually or we can use plugin for
OllyDbg (plugin called Olly Advanced)

loc 402CC5

debug_exit

2. EFLAGS register - setting TF (trap flag) to cause exception,
under debugger we will not get single step
exception and function will return wrong
value.

3. Int 2Dh - this trick is slightly new. It was described by
me ;-) at http://rootkit.com (original link:

http://rewolf.pl/int.2d.antidebug.and.code.obfuscation.txt)

http://rootkit.com/
http://rewolf.pl/int.2d.antidebug.and.code.obfuscation.txt

4. QueryPerformanceCounter - it is used to measure execution
time between two places in the code

5. GetTickCount - similar to point 4. In one case GetTickCount
is used only if QueryPerformanceFrequency
return 0. Using performance counters is more
precisely than tick counts.

6. Custom techniques:

- first customization affects IsDebuggerPresent and is used
to detect if we have patched IsDebuggerPresent to always
return 0. It modify IsDebugged flag in PEB, and checks
this modification through call to IsDebuggerPresent,
because IsDebuggerPresent should return this flag.

- second customization affects QueryPerformanceCounter and
GetTickCount patching. If we have GetTickCount patched
to return const value, it will be detected because of
Sleep function.

- Removing encryption and anti-debug

For easy debugging we should to remove some anti-dbugging
tricks (not all). IsDebuggerPresent is handled by OllyAdvanced
plug-in. Trap flag based trick 1is handled by Olly with proper
exception handling (Options->Debugging options—->Exceptions: check
Single-step break). To bypass int 2Dh trick we should patch

function at address 0x401D80 to return always O:

Finally to bypass execution time <checks we should patch
QueryPerformanceFrequency to always return 0, so program will use
only GetTickCount. Basically we can patch also GetTickCount that
it will always return constant wvalue, but then we should set
breakpoint at 0x403530 and correct return value manually to
simulate that Sleep(250). Now we can easily debug executable
without any ,strange” behaviours.

Executable contains three encrypted blocks at:

- O00401EF0-00401FDO
- 00402D50-00402E30
- 00402r20-00403000

I have decrypted it during debug session and dumped decrypted
regions to file (LordPE, dump region). Next I have put that
decrypted regions to executable. Already we have to patch
decryption routine to avoid processing already decrypted regions.
It can be done in two ways (In my solution I've lesser version).
We can patch function at address 00401C20 that it will return
immediately without doing anything or we can ,nop” three times
calls to this function (00402C0D, 00402CD4, 00402D18). The 1last
thing to fix is memory checksums. There are four places in the
main function where we have to patch checksum calculations
(probably it is one checksum function but inlined) :

00402C4F
00402C9E
0040350C
0040358B

Four addresses above points to conditional Jjumps (jz). To fix
checksum error we should change that jumps to unconditional (jmp).

- calculating password

Ok, time to calculate password (the most horrible thing in
this phase). In phase 1 we have keyfile called password.txt and
everything was simple. This time password is embedded in data.txt
file. Basically password checking routine starts at 00402D54.
Function sub_40Al170 reads password from the first line of data.txt
file. Password have 12 characters and it is passed to algorithm
that calculate 4 characters from that 12 chars:

char password[12];
char passSum[4];

passSum[0] = password[0] + password[4] + password[8];
passSum[l] = password[l] + password[5] + password[9];
passSum[2] = password[2] + password[6] + password[10];
passSum[3] = password[3] + password[7] + password[l1l];

If password is correct, passSum is equal to ,4242”. There is many
correct passwords, for example:
ZzZZzZzZz@>@>

- reverse engineer the mathematical formula (objective 1)

Location of code that generates wvalue =-59.0079, I have found
in similar way like in phase 1. So I've set breakpoints on all
,user” functions containing FPU operations. This time it was six
functions:

- 00401E20
- O0O0401EFO
- 00402040
- 00402160
- 00402280
- 00402380

This breakpoints were hit few times during processing first two
sets of data from data.txt, but only two are hit when third set is
processed: 00401EFO, 00401E20. Function at 00401E20 is
unimportant, so we have only one function responsible for searched
mathematical formula:

main+2

; this is anti-debug function
; (setting trap flag)

if debugged then exit

loc 401F18

ecx 0DOh
ecx 0C4h
eax 0COh
ecx 0B8h ; this calculates varl in my
edx eax ; formula:
eax ecx ; varl = (3 * p3) +
eax 0CCh ; (2 * (pl - p2 + p4d)) -
ecx 34h ; PS5 - p7 + p8
eax 0BCh ;
eax 0C8h
ecx
ebp eax ; > for third set ecx =
loc _401F80 ;
ebp ; so we are here
ecx eax
ecx eax
ds ; this calculates var2 in my
ds ; formula:
ebp ; var2 = (varl * varl * g3) +
ebp ; (g2 - varl * gl) - (p9 * g4)
ds ;

:00401F80

:00401F80 loc_401F80:

:00401F80 cmp ecx, 2

:00401F83 jnz short loc 401FBS

:00401F85 fild [ebptvar 4]

:00401F88 mov edx, eax ; this code is not executed
:00401F8A imul edx, eax ; during objective 1
:00401F8D fmul ds:dbl 4284A0 ;

:00401F93 fsubr ds:dbl 428498

:00401F99 mov [ebptvar 4], edx

:00401F9C fild [ebptvar 4]

:00401F9F fmul ds:dbl 428490

:00401FA5 faddp st(l), st

:00401FA7 fild dword ptr [esi+30h]

:00401FAA fmul ds:dbl 428488

:00401FBO

loc 401FBO
st (1) st ; end of war2 calculations
ebp

loc_401FB5

ecx esi

ebp ; final calculations:

result = (g5 / var2) + g6 - g7;
ds
esi 98h ; store -59.0079

sub 401E20
esi
esp ebp
ebp

So final formula looks like this:
varl = (3 * p3) + (2 * (p1l - p2 + p4)) - p5 - p7 + p8;

var2 = (varl * varl * g3) + (g2 - varl * gl) - (p9 * g4);
result = (g5 / var2) + g6 - g7;

Unfortunately I have two ,typo” 1in my submission ;/ About first
I've written e-mail but didn't get any reply, and second I've
found during writing this report. In my original submission I've
missed square of wvarl, and to the final result I've added g7
instead of subtract.

- patch executable to extend some functionality (objective 2)

This was the easiest part of challenge. I've found upper limit
in data section:

main+50Ar

It is referenced from main function:

To remove input limit we should change that conditional jump (jp)
at 00402F7B to the unconditional jump (jmp) .

2. Time to break
- removing encryption

about 1 hour (during this stage I've also partially removed
checksum checking and anti-debug stuff)

- searching password
2,5 hours (I think the hardest part in this phase)
- reverse engineer the mathematical formula (objective 1)
1,5 hour (searching and reversing, not so hard)
- patch executable to extend some functionality (objective 2)
30 minutes (it was easy)
Developed tools : none

Internet research: none
Overall time : 5,5 hours

