
--
| Author: ReWolf |
| e-mail: rewolf@rewolf.pl |
www : http://rewolf.pl

HACKER CHALLENGE 2008 Phase 1 Report
1. Background

This year Hacker Challenge Phase 1 was pretty harder than the
last year. It took me 5,5 hours to remove all limits and reverse
engineer the formula. Protected software contain two encrypted
code blocks, few self-checks and few anti-debug tricks, all those
nuisances can be easily defeated, what you will see during further
reading of this report. To start the proper challenge you need to
find the password, which is a bit complicated, because it looks
like SHA-256(password + 'salt') and it is probably irreversible.
Successfully patched program should draw graph of the three
sinusoidal functions and generate file data.out identical to given
final.results.
2. Attack Narrative
 - Decrypting encrypted blocks

Encrypted blocks can be easily found in IDA, because
encryption is done on the particular block of functions level. IDA
will not recognize any functions in encrypted block and it will be
marked as 'data'. Encrypted blocks of code are placed at:
– 0x00401180 - 0x00401DC0
– 0x00403930 - 0x00403F50

Now we can search for code that reference those addresses. We
should be here:

.text:00404029 push offset _WinMain@16 ; 00403F50

.text:0040402E lea eax, [ebp+var_44]

.text:00404031 push offset _windowProc ; 00403930

.text:00404036 push eax ; int

.text:00404037 call _decryptCode ; 00402B60

.text:0040403C push offset sub_401DC0 ; int

.text:00404041 push offset _recur_sub_401180 ; lpAddress

Illustration 1: IDA Navigation Graph (blue color - code; gray color - data)

mailto:_WinMain@16

.text:00404046 push edi ; int

.text:00404047 call _decryptCode ; 00402B60

As you can see, function _decryptCode (function address
0x00402B60) takes three parameters:
void __cdecl _decryptCode(BYTE* key, BYTE* beginAddress, BYTE* endAddress);

Basically _decryptCode is the Rijndael cipher implementation, we
can recognize it be 'magic' values (tables) used to decipher data,
or through the PEiD plugin called Krypto ANALyzer (KANAL). Key for
the first buffer (0x00403930 - 0x00403F50) is constant, and 256
bits long:

00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F
00 01 02 03 04 05 06 07 08 09 0A 0B 0C 0D 0E 0F

Second buffer is encrypted with the key generated as a SHA-256
hash calculated from the first buffer (before decryption) and it
should be equal to (256 bits long):

7C 1B 8C 42 6D 98 08 15 25 7D 43 BD E4 F8 6F 36
58 DE 12 80 F0 B5 27 D9 50 A7 96 C6 BB ED 95 FA

After decryption IDA can recognize few more functions:

Illustration 2: IDA Functions list window, selected functions placed in decrypted
blocks.

 - Removing Anti-Debug and Anti-Tamper Tricks

In this section I will describe all anti-debug and anti-
tamper tricks that I found in the executable. I'll do it on the
each function basis.

1. Function at 0x00401000:
This function calculates SHA-256 hash of the _WinMain@16

(0x00403F5, 0x280 bytes long) function. If hash is different than
hash stored in executable, function will overwrite values in table
at address 0x00408838. This table is used later in the H function
(0x004013D0) to calculate final math formula. Original SHA-256
hash should be equal to:

B5 20 B3 11 78 A7 F1 C1 7D B7 EC 5F 04 9F DD 77
C4 A1 FD 0D 26 99 24 88 FA 5E 84 66 2F 7C 49 86

Solutions:

– Patch conditional jump (jle) at address 0x00401141 to
unconditional jump

– Patch stored in executable hash to the new one. Code responsible
for filling table with hash is placed at 0x0040101B. I've used
this solution.

2. Function at 0x00401380:
This function sets SEH handler and Trap Flag, under debugger

SEH handler will not be called and function return 1 in EAX. SEH
handler is responsible for setting EAX to 0. This 'anti' is used
in function G, if it will detect debugger it will modify (set to
0) one of the arguments passed to G (0x004014F0).
Solution:

– Patch function at 0x00401380 to always return 0.
3. Function at 0x004013D0 (H function):

This function contain very tricky check. On each call it
checks if one byte from the code section is equal to 0xCC (int3,
breakpoint). In fact it counts all occurrences of 0xCC byte in the
code section, if it is more than 0xE8 it will modify sign (fchs)
of one of the H function arguments.
Solutions:

– Patch conditional jump (jbe) at address 0x00401413 to
unconditional jump

– Don't do anything, this check only affects software breakpoints

(int3, 0xCC), so in final executable 0xCC counter will be ok.
Under debugger we can use Hardware Breakpoints.

4. Function at 0x004017F0 (F function)
This function checks DebugFlag in Process Environment Block

(PEB):
.text:00401902 mov eax, large fs:30h
.text:00401908 movzx eax, byte ptr [eax+2]
.text:0040190C and eax, 0FFh
.text:00401911 mov [ebp+64h+var_4], eax

Solution:

– Set DebugFlag in PEB to 0 or use OllyAdvanced PlugIn
5. Function at 0x00402280:

This functions contain two anti-debug checks. First is based
on int3 handler, if we have attached debugger, and we will pass
int3 handling to the application, everything will be ok, in other
case AES(rijndael) will use Encryption Tables instead of
Decryption Tables. Second check is based on GetTickCount function,
if we have patched GetTickCount (to return constant value, or just
increment on each execution), we will get error, because of too
fast execution.

Solutions:

– pass int3 to the application
– don't patch GetTickCount function
– trace over instead of tracing into this function

6. Function at 0x00403F50 (_WinMain@16)
This function checks first byte of SHA-256 hash generated

from the first encrypted buffer (described in section 'Decrypting
encrypted blocks'), this byte should be equal to 0x7C.
Solutions:

– patch comparison (cmp) at 0x00404016 with correct new value
– patch conditional jump (jz) at 0x00404019 to unconditional

 - Defeating password protection

Defeating password protection was pretty confusing. I still
don't have the proper password, but as long as it is not the
objective I will not bother to find it. Password should be placed
on the first line of the data.in file and it can be up to 8
characters length. 8 bytes password buffer is concatenated with

string 'salt' and passed to SHA-256 function. Obvious solution is
a SHA-256 12-chars brute-force, with four characters constant, but
it would take to long to find out correct password. In fact
I didn't checked if it is an original SHA-256, so I cannot claim
that it is irreversible. Hashed password is compared to:

09 0A 89 6D 12 27 D0 03 75 0F A2 46 EF F0 2C 1E
92 33 2C 5C 6F FF 36 D8 74 2E 79 B9 E0 EB A0 A9

.text:004039B5 mov [ebp+var_28], 6D890A09h

.text:004039BC mov [ebp+var_24], 3D02712h

.text:004039C3 mov [ebp+var_20], 46A20F75h

.text:004039CA mov [ebp+var_1C], 1E2CF0EFh

.text:004039D1 mov [ebp+var_18], 5C2C3392h

.text:004039D8 mov [ebp+var_14], 0D836FF6Fh

.text:004039DF mov [ebp+var_10], 0B9792E74h

.text:004039E6 mov [ebp+var_C], 0A9A0EBE0h

I've changed it to:

B6 43 42 83 49 D7 8B 0B E7 B2 A4 51 75 DF 86 34
BA 40 C0 20 E0 7D 5D 77 B2 ED 5D 3D 1B 07 BA E5

.text:004039B5 mov [ebp+var_28], 834243B6h

.text:004039BC mov [ebp+var_24], 0B8BD749h

.text:004039C3 mov [ebp+var_20], 51A4B2E7h

.text:004039CA mov [ebp+var_1C], 3486DF75h

.text:004039D1 mov [ebp+var_18], 20C040BAh

.text:004039D8 mov [ebp+var_14], 775D7DE0h

.text:004039DF mov [ebp+var_10], 3D5DEDB2h

.text:004039E6 mov [ebp+var_C], 0E5BA071Bh

So my password in data.in is already equal to 'password'.

 - Reverse engineer the mathematical formula (Objective 1)

Objective 1 was the most time-consuming part this year.
Locating function H() was pretty easy. At first I searched for
function F(). My approach relied on searching all logarithm
related FPU instructions in disassembly. I searched for phrase
'fyl' and I have found three places where FPU instruction fyl2x
was used:

.text:00401162 fyl2x

.text:00401428 fyl2x

.text:00401DB3 fyl2x

First occurrence is used in one of the anti-debug routines, second
occurrence is used by H() function, finally third occurrence is
a place that we are looking for:

.text:00401D90 mov eax, [esp+arg_10]

.text:00401D94 fld [esp+arg_8]

.text:00401D98 push eax ; int

.text:00401D99 sub esp, 10h

.text:00401D9C fstp [esp+14h+var_C]

.text:00401DA0 fld [esp+14h+arg_0]

.text:00401DA4 fstp [esp+14h+var_14]

.text:00401DA7 call Function_F_ ; call 0x004017F0

.text:00401DAC fldlg2

.text:00401DAE add esp, 14h

.text:00401DB1 fxch st(1)

.text:00401DB3 fyl2x

.text:00401DB5 fmul ds:dbl_405288 ; dq 10.0

.text:00401DBB retn

We can now check all functions called by F(), below is the simple
graph of functions tree, it lacks all API calls from MSVCP80.dll
and one call to anti-debug routine.

As we can see on the graph, we have two candidates for function
G(), first is at 0x004014F0 and second at 0x00401760. We know that
function G() have to iteratively call function H(), this condition
eliminate function at 0x00401760, because there is no loop inside
this function. Final formula looks like this:
result = ((g2)^|p3|) * e^(ln(p2 * p2) * p3 - d1[p3] – ln(f_401180(p3+p1+g1)))

^ -> power
|a| -> abs(a)
ln -> natural logarithm

d1[] it is table with data

Illustration 3: Call-graph of functions related to mathematical formula.

g1 = [0x00405238] -> dq 1.0
g2 = [0x00405248] -> dq -0.25

d1 = 0x00408838

Above formula needs a few explanations. First of all, original
formula is a bit different, instead of ln(p2 * p2) there is
ln(2)*log2(p2 * p2). We can change base of the log2:

ln(2) * (ln(p2 * p2) / ln(2) = ln(p2 * p2)

This modification shouldn't affect final calculations. Rest of
formula is pretty understandable and don't need further
clarifications.

 - Patch executable to remove some limits (Objective 2)

The easiest part of challenge, it takes only few minutes to
patch all limits, removing self-checks is described in one of the
previous chapters.

– The first value is a real number and is limited to a minimum of
2.0: comparison is done at 0x00403B17, we need to patch
conditional jump (jp) at 0x00403B21 to unconditional jump.

– The second value is a real number and is limited to a maximum of
4.0: comparison is done at 0x00403B89, we need to patch
conditional jump (jnz) at 0x00403B93 to unconditional jump.

– The third value is an integer and is limited to being less than
32: our value is anded with 0x1F (and eax, 1Fh) at address
0x00403BF8, we can just nop this instruction (0x90 0x90 0x90).

– The fourth value is an integer and is limited to a maximum of 1:
comparison is done at 0x00403C32, we need to patch conditional
jump (jle) at 0x00403C35 to unconditional jump.

– The fifth value is an integer and is limited to 16: comparison
is done at 0x00403C86, we need to patch conditional jump (jle)
at 0x00403C89 to unconditional jump.

All those informations we can get from the simple trace of
function 0x004039A0, which is responsible for parsing data.in
file.

3. Time to break
– Removing encryption – 15 minutes
– Defeating anti-debug and anti-tamper tricks – 45 minutes
– Searching password – 30 minutes
– Reverse engineering mathematical formula – 3,5 hours

– Removing limits – 20 minutes
– Overall time – 5h 20m
4. Tools used
– OllyDbg 1.10 + Olly Advanced PlugIn
– IDA Pro Advanced 5.3
– PEiD + Krypto ANALyzer PlugIn
– Notepad
– Totalcmd
5. Conclusions

This year hacker challenge phase 1 was really challenging, it
doesn't mean that it was hard (but I'm still confused about few
things in the mathematical formula). To get better protection
authors should consider developing simple (well, maybe not so
simple) obfuscator or code-morpher. It is always harder to reverse
engineer obfuscated/morphed code. Executable should be encrypted
with some multi-layer protector, with strong import table
protection. I would also add more code to the target application
just to confuse potential attacker. I really like self-checks used
in the target application, but we saw similar tricks in the last
year challenge, so it was rather easy to bypass them. Mathematical
formula was pretty complicated this year, which is a big plus. I
spent 5,5 hours to get all things working, so my final evaluation
of the difficulty is medium.

