
Hacker Challenge 2008
Phase 3 Reportby ReWolfrewolf@rewolf.plhttp://rewolf.pl

1

mailto:rewolf@rewolf.pl
http://rewolf.pl/

Table of Contents:

➢ Background
➢ Attack Narrative

 Decrypting encrypted blocks
 Defeating first password
 Objective 2: Anti-tamper
 Objective 1: Reverse Engineering a Formula
 Time to break

➢ Tools used
➢ Conclusion

2

Background:After 3 months of waiting, I had finally occasion to solve phase 3 binary of
Hacker Challenge 2008. I have to say that this time it was pretty interesting (of course it doesn't mean that previous phase, and the last year challenge were not interesting), especially mathematical formula. Except reverse engineering the formula, I had to remove some limitations from the given application. Those two objectives were mandatory, in addition I had to bypass password protection for proper working of the application. Further research lead me to the finding that this time I have to deal not with only one password, but with two (small aggravation). Like in previous challenges, binary was partially encrypted and protected with few anti-debug and anti-patching tricks. After removing all limits and circumventing both passwords, protected application should generate file data.out identical to the given file final.results and print on the screen three sinusoidal curves.
Attack Narrative:

Decrypting encrypted blocks:At first I decided to decrypt encrypted parts of code. Function responsible for decryption can be easily found by looking (in IDA) at the list of references to any of the encrypted blocks (except few blocks that aren't referenced at first glance).
Address of block Size of Block References

0x00401070 0x2D0 Not referenced
0x00401340 0x140 0x00404183, 0x0040418F,

0x0040425F, 0x0040426B
0x00401B80 0x5F0 0x0040412D, 0x00404139
0x004027E0 0x090 0x0040414B, 0x00404156
0x004030C0 0x7A0 0x0040411C, 0x004041A8,

0x004041B4, 0x004041D0,
0x00404241, 0x0040424D

0x00403860 0x030 0x0040431D, 0x00404326
0x00403890 0x4A0 0x00404116, 0x004042E4,

0x004042F0
0x00403D30 0x070 0x00404302, 0x0040430BInteresting (from decryption point of view) are blocks placed at 0x00401B80,

0x004027E0, 0x00403860 and 0x00403D30, because they have only two references. Looking at those references reveals the typical call to a decryption function:
mov r32, offset_to_encrypted_buffer ; first reference
add r32, size_of_encrypted_buffer
push r32
push offset_to_encrypted_buffer ; second reference
push offset_to_key_buffer
call rijndael_decrypt ; 0x00402750

3

In the C/C++ declaration of rijndael_decrypt() would look like this:
void __cdecl rijndael_decrypt(BYTE* key, BYTE* beginAddress, BYTE* endAddress);Function rijndael_decrypt is placed at 0x00402750 and it is referenced seven times (for every block in the table that has references), sizes in the table are a bit different than arguments passed to the decrypt function, because they contain also alignment bytes 0xCC, but I'll show the correct sizes at the and of this paragraph. The easiest way (at least for me) of decrypting those blocks is run executable under debugger, break on
WinMain function and modify execution in that manner, that application will execute only parts of code responsible for decryption of the code. WinMain function is placed at 0x00403DA0, to avoid exceptions on writing to the code section, I had to modify memory access under debugger, it can be also done through modification of
IMAGE_SECTION_HEADER of code section in PE header in the executable. So called „execution modification” is nothing more than just changing EIP to point to the start of the call to the decryption routine, so I have to do it seven times:

Execution

Start End
0x0040412D 0x00404148
0x0040414B 0x00404165
0x00404183 0x0040419E
0x004041A8 0x004041C3
0x004042E4 0x004042FF
0x00404302 0x0040431A
0x0040431D 0x00404335After execution of those blocks I've saved code section to the new executable file ('Copy to executable' option in OllyDbg). New file loaded to IDA showed me, that there is still one encrypted block, at address 0x00401070. This block can be decrypted in similar way as previous blocks, but with one small exception, 'endAddress' value is set some instructions before the proper call:

mov r32, offset_to_encrypted_buffer ; first reference
...
add r32, size_of_encrypted_buffer
...
push r32
push offset_to_encrypted_buffer ; second reference
push offset_to_key_buffer
call rijndael_decrypt ; 0x00402750So, the execution table will be:

Execution

Start End
0x00401350 0x00401355

4

0x0040135F 0x00401365
0x004013D8 0x004013E8After this I can save changes to my new executable and admire clean code without any encryption under IDA (of course at this time my executable will not work).During inspection of encrypted blocks I noticed in a few places, code very similar to decryption, that references encrypted blocks. Further research showed, that few blocks are re-encrypted at runtime, probably to avoid dumping code from the application executed without debugger. Encryption function is placed at 0x004027E0 and has identical arguments as decryption:

void __cdecl rijndael_encrypt(BYTE* key, BYTE* beginAddress, BYTE* endAddress);Blocks that can be re-encrypted:
• 0x004030C0
• 0x00401340
• 0x00401070To avoid decryption and encryption of already dumped blocks I've patched those two functions (rijndael_decrypt() and rijndael_encrypt()) to return immediately without doing anything.

Decrypting blocks summary

Block address Block size Decryption key
0x00401070 0x2C3 59 1F 1B 77 77 0A 4B 8E DC B4 0C 32 E2 2F 59 AE

D2 82 03 BB 89 B9 02 D2 6E AD AF 70 9D 81 6A B6
0x004030C0 0x79A 2E 60 71 0C 84 44 86 75 51 F7 E9 42 A2 56 08 25

59 3D 7F 06 D0 68 C4 C6 2C 73 C3 98 D0 2B 2E BF
0x00401B80 0x5E2 EC 41 35 CF 5C AA A1 13 20 60 44 D2 ED C6 65 28

08 70 E8 8A A9 74 02 B4 E2 CE F3 7B C2 7C A6 6C
0x004027E0 0x081 EC 41 35 CF 5C AA A1 13 20 60 44 D2 ED C6 65 28

08 70 E8 8A A9 74 02 B4 E2 CE F3 7B C2 7C A6 6C
0x00401340 0x137 EC 41 35 CF 5C AA A1 13 20 60 44 D2 ED C6 65 28

08 70 E8 8A A9 74 02 B4 E2 CE F3 7B C2 7C A6 6C
0x00403890 0x497 2E 60 71 0C 84 44 86 75 51 F7 E9 42 A2 56 08 25

59 3D 7F 06 D0 68 C4 C6 2C 73 C3 98 D0 2B 2E BF
0x00403D30 0x06F EC 41 35 CF 5C AA A1 13 20 60 44 D2 ED C6 65 28

08 70 E8 8A A9 74 02 B4 E2 CE F3 7B C2 7C A6 6C
0x00403860 0x027 EC 41 35 CF 5C AA A1 13 20 60 44 D2 ED C6 65 28

08 70 E8 8A A9 74 02 B4 E2 CE F3 7B C2 7C A6 6C

Defeating first password:During defeating first password I decided to patch given binary in the way that it will allow me to run it under debugger, so in this chapter I'll also describe some
5

of anti-debug and anti-patch tricks (more tricks will be described in 'Objective 2: Anti-
tamper' paragraph). First trick calculates modified SHA-256 hash from WinMain function:
BYTE specHash[] =
{
 0xA3, 0x52, 0x48, 0xFF, 0xD1, 0x61, 0xC6, 0x5B,
 0xA4, 0xDD, 0xF9, 0xB5, 0xCC, 0xB6, 0x35, 0xBE,
 0xC1, 0xDD, 0x99, 0x28, 0x0F, 0xF6, 0x72, 0x16,
 0x13, 0x9F, 0xC4, 0x68, 0x5B, 0x63, 0xAA, 0x49
};
BYTE* hashCtx = initHash(WinMain, 0x727, “”, 0);
BYTE* outHash = hash(hashCtx);
int i = 0;
int sum = 0;
while (i < 32)
{
 sum += specHash[i] ^ outHash[i];
 i++;
}
if (sum)
 MessageBoxA(0, "Corrupted binary.", 0, 0);This trick can detect on-disk modification of WinMain function, or breakpoints set in
WinMain during debugging. The simplest solution is to patch conditional jump at
0x00403F52 to unconditional.After this check I've encountered very similar code that checks first password. First password should be passed to the application through command line:
final.exe secretpass

“secretpass” is concatenated with string “drpepper” and hashed with the previously mentioned modified SHA-256 function. The result should be equal to:
FB 7B 2B 75 55 28 A6 81 38 59 37 EB 16 65 F2 38
CA 44 41 E6 57 C1 EA 0A A5 45 DF 6F 2E 24 47 38Removing this check is as simple as previous, I've patched conditional jump at

0x004040A2 to unconditional. Successfully removed password protection lead me to the call to OutputDebugStringA with "Hello there!\n" as a parameter. After those modifications, executable refused to work, further research showed that there is a little problem with OutputDebugStringA and GetLastError. I didn't knew this trick before, but it looks like this trick works only on Windows XP x86:
 push offset_to_some_string
 call OutputDebugStringA
 call GetLastError
 cmp eax, 2
 jz _everything_ok
 ;
 ;code executed if debugger detected
 _everything_ok:

6

On Windows XP x64 and Vista x86 this trick will always detect debugger, even if we don't have such evil thing. Solution for this problem will be small patch (as always), I've changed this conditional jump (jz) to unconditional. This trick is used two times, so I need to patch this jump at 0x004040DF and 0x0040143F. First usage is placed in
WinMain function and in case of detecting debugger it overwrites body of the function (0x004030C0) responsible for reading file 'data.in' with body of the function from
0x00403890 (function draws graph on the screen). Second usage is in function at address 0x00401340 and exit from application. Now application prints the graph identical to the one from 'instructions-phase3.pdf' and produces empty file 'data.out'.
Objective 2: Anti-tamperFurther tracing of the binary showed few more anti-debug tricks. Due to improper handling of Int 2D instruction under debugger, I've patched it to UD2 instruction (0x0F0B). Int 2D was used two times, first in WinMain function at address
0x0040416F, and second at 0x004010A8 (function F). Under debugger Int 2D will not cause exception. In WinMain function, if exception handler is not called, function at
0x401340 will not be decrypted. In function F exception handler is responsible for all calculations related to the mathematical formula that have to be reverse engineered.Another anti-debug is placed at 0x004041C6:
004041C6 CALL KERNEL32.IsDebuggerPresent
004041CC TEST EAX, EAX
004041CE JE SHORT final4.004041D8
004041D0 MOV EAX, final4.004030C0
004041D5 MOV BYTE PTR DS:[EAX], 0C3This is rather desperate check, because probably everyone has patched
IsDebuggerPresent function (or field in PEB), but if not, then in case of detecting debugger application will put ret instruction (0xC3) at the beginning of the function at
0x004030C0. Checking IsDebuggerPresent return value is used once more, during processing data collected from 'data.in' file.After IsDebuggerPresent there is one more timing-based anti-debug trick:
004041D8 CALL KERNEL32.GetTickCount
004041DE SUB EAX, DWORD PTR SS:[EBP-4C0]
004041E4 MOV DWORD PTR SS:[EBP-42C], EAX
004041EA CMP DWORD PTR SS:[EBP-42C], 0C8 ; 200
004041F4 JB SHORT final4.00404202
004041F6 CMP DWORD PTR SS:[EBP-42C], 7D0 ; 2000
00404200 JBE SHORT final4.00404209
00404202 XOR EAX,EAX
00404204 JMP final4.004044B4It measures execution time of the block of code and if value is outside 200-2000 ticks range application will exit. For the ease of debugging I've patched conditional jump at
0x004041F4 to unconditional jump and changed destination of this jump from

7

0x00404202 to 0x00404209.Before call to the function that will read 'data.in' file there is one more anti-debug trick. Setting of this trick is done at the beginning of the WinMain function:
BYTE* addr = VirtualAlloc(0,
 SystemInfo.dwPageSize,
 MEM_RESERVE|MEM_COMMIT,
 PAGE_EXECUTE_READWRITE);
addr[0] = 0xC3u;
VirtualProtect(addr,
 SystemInfo.dwPageSize,
 PAGE_GUARD|PAGE_EXECUTE_READWRITE,
 &flOldProtect);This code allocates one page of virtual memory with the execution rights, puts ret instruction (0xC3) in this memory, and sets PAGE_GUARD protection on this memory page. In the middle of the WinMain function there is jump to that memory, which should trigger exception handler, but under debugger this exception is handled by debugger (actually I didn't bother myself if OllyDbg can pass this exception to the application). If exception handler is not called given binary skips call to the function that loads 'data.in' file. My first solution was rather ugly, but it works. I've patched instruction at 0x00404216:

Original Patched
push offset loc_404241 jmp short loc_40422FIt solves all problems without throwing exception. After few days I 'googled' that it can be done easier. During setting this trick, I could change ret instruction to int3 or any other code that will generate exception:

addr[0] = 0xCCu;Finally I'm now on the call to the function that reads data from 'data.in' (address
0x004030C0). At first, function opens file 'data.in', then it counts all occurrences of
0xCC in the function body:
 BYTE* funcAddr = 0x004030C0;
 int i = 0;
 int occurrs = 0;
 do
 {
 BYTE cByte = funcAddr[i] ^ 0xDE;
 if (cByte == 0x12)
 occurrs++;
 }
 while (i < 0x79A);
 if (occurrs != 0x10)
 goto _end_of_function;If there is more than 0x10 occurrences of 0xCC byte it means that someone set breakpoint on the checked code. For me it was very comfortable to 'nop' this detection,

8

so I've 'nopped' conditional jump at address 0x00403132. File 'data.in' is processed by sequential calls to fgets() function, gathered lines are converted through atoi() or
atof() functions, but there is one exception to this. For the value from fourth line application calls function isdigit() on the first character from line. If the first character is not digit, whole line is concatenated with “mrsdash” string and modified SHA-256 is calculated. Calculated hash should be equal to:

D2 F1 EB 1B C3 FF 5B 72 76 7D 51 0A D0 41 39 3B
B3 0D 06 36 5E D2 81 18 5D 68 8D 2B 4A 97 9B 7BIf this password is not set properly, application generates empty 'data.out' file, to avoid this I've patched binary at address 0x004032E7:
Original Patched

lea esi, [ebx+eax] xor esi, esi
 nopNow I can describe ho to remove limits mentioned in instructions:

1. The first value is a real number and is limited to a minimum of around 1.4:

00403379 FLD QWORD PTR DS:[4051D0] ; equal 2.0
0040337F FLD ST
00403386 FSQRT
0040338B FCOM QWORD PTR DS:[409150] ; value from the first line
00403391 FSTSW AX
00403393 TEST AH,41
00403396 JNZ SHORT final6.004033A0 ; jump if value higher than sqrt(2.0)
00403398 FSTP QWORD PTR DS:[409150] ; else store minimal value = sqrt(2.0)
0040339E JMP SHORT final6.004033A2
004033A0 FSTP ST
004033A2 The exact limit is equal to sqrt(2.0). To remove this limit I've patched conditional jump at 0x00403396 to unconditional jump.
2. The second value is a real number and is limited to a maximum of around 4.9:

004033A2 FLD QWORD PTR DS:[405270] ; equal 3.14
004033A8 FXCH ST(1) ; ST0 = 2.0 from the previous operation
004033AA CALL <JMP.&MSVCR80._CIpow> ; pow(3.14, 2.0)
004033AF FMUL QWORD PTR DS:[4051B8] ; equal 0.5
004033B5 FCOM QWORD PTR DS:[409158] ; value from the second line
004033BB FSTSW AX
004033BD TEST AH,5
004033C0 JPE SHORT final6.004033CA ; jump if value lower than 4.9...
004033C2 FSTP QWORD PTR DS:[409158] ; else set minimal value to 4.9...
004033C8 JMP SHORT final6.004033CC
004033CA FSTP ST
004033CCThe exact limit is equal to pow(3.14, 2.0)/0.5. To remove this limit I've patched conditional jump at 0x004033C0 to unconditional jump.

9

3. The third value is an integer and is limited to being less than 64:

00403491 MOV EAX,DWORD PTR DS:[409160] ; value from the third line
0040349F AND EAX,3F ; 63 decimalTo remove this limit I've 'nopped' an and instruction at 0x0040349F.Before removing the last limit I had to bypass one more self-checking code. At
0x004034F4 there is code that calculates modified SHA-256 from the current function, calculated hash is used then in some calculations and if it is not equal to values below it changes some initial values of the future calculations. Proper hash:

CC 7C 9B 8E FF 3C 2B 55 27 23 6C 2E 6F 84 09 26
70 80 0D 50 02 08 24 EF 76 77 55 17 59 75 EE 25Patch to support this checksum will be showed in the table with summarized all patches (at the end of this paragraph).

4. The sixth through eighth values are real and are limited to being greater than around
0.2:

00401355 FLD QWORD PTR DS:[4051F8] ; equal 0.2058008
0040135C FLD QWORD PTR SS:[EBP+8] ; input value to check
00401365 FCOM ST(1)
00401368 FSTSW AX
0040136A TEST AH,5
0040136D JPE SHORT final6.00401376 ; jump if value greater than 0.2058008
0040136F FSTP ST
00401371 FST QWORD PTR SS:[EBP+8] ; else store 0.2058008
00401374 JMP SHORT final6.00401378
00401376 FSTP ST(1)
00401378To remove this limit, I've patched conditional jump at 0x0040136D to unconditional jump.After removing all limits, application generated file 'data.out', but with wrong values, also graph printed on the screen don't look so good (it is green line at the top of the window). It looks that I'm still missing few self-checks.Those missed checks are placed in F function. First check calculates modified SHA-
256 hash from the body of F function. Two double-words are taken from hash and used to initialize one of quad-word used in further calculations. The solution is rather simple, I've gathered those two values from hash from the original executable and patched code at 0x004010FB to:
004010FB MOV DWORD PTR SS:[EBP+54],E8584CAA
00401102 NOP
00401103 NOP
00401104 NOP
00401105 NOP

10

00401106 NOP
00401107 MOV DWORD PTR SS:[EBP+58],400BB67A
0040110E NOP
0040110F NOP
00401110 NOP
00401111 NOP
00401112 NOPSecond missed check is placed at 0x004012F3 and counts how many times byte 0xCC occurs in the F function:
 BYTE* funcAddr = 0x00401070;
 int i = 0;
 int occurrs = 0;
 do
 {
 BYTE cByte = funcAddr[i] ^ 0x64;
 if (cByte == 0xA8)
 occurrs++;
 }
 while (i < 0x2C3);
 if (occurrs != 2)
 goto _exit;Patching conditional jump at 0x00401322 to unconditional solves the problem. Now I've fully working executable with proper output (graph and file).Below table summarizes patches that were done to the application, except patches for encrypted blocks, which were discussed earlier.

Address Size New code Reason
0x4010A8 0x02 UD2 Int 2D changed to UD2 for

better exception handling
under debugger.

0x4010FB 0x18 MOV DWORD [EBP+54],E8584CAA
5xNOP
MOV DWORD [EBP+58],400BB67A
5xNOP

Setting proper initialization
values in function F, to avoid
using wrong generated hash.

0x401322 0x06 JMP 004010B2 Removes detection of 0xCC
breakpoints in F function.

0x40136D 0x02 JMP 00401376 Removes limits from the sixth
through eighth values in
'data.in' file.

0x40143F 0x02 JMP 00401449 Patch for OutputDebugStringA/
GetLastError trick. It is
mandatory to run binary on
systems other than Windows XP
x86.

0x403132 0x06 6xNOP Removes detection of 0xCC
breakpoints in function at
0x004030C0.

0x4032E7 0x03 XOR ESI,ESI
NOP

Patch for second password
check.

0x403396 0x02 JMP 004033A0 Removes limit from first value

11

in 'data.in' file.
0x4033C0 0x02 JMP 004033CA Removes limit from second

value in 'data.in' file.
0x40349F 0x03 3xNOP Removes limit from third value

in 'data.in' file.
0x403528 0x06 XOR EAX,EAX

INC EAX
MOV ECX,ESI
MOV ESI,004088D8

Setting offset to correct hash
of function at 0x004030C0
instead of using hash
generated at runtime.

0x40353C 0x02 JMP 00403544
0x4035A1 0x01 PUSH ECX
0x4035AB 0x01 PUSH EDI
0x40378B 0x06 6xNOP Removes one of the time-based

checks.
0x403E0F 0x03 MOV BYTE [EAX],CC Putting int3 instead of ret

instruction in the PAGE_GUARD
memory.

0x403F52 0x02 JMP 00403F70 Removes hash-based self-check
from WinMain function.

0x4040A2 0x02 JMP 004040CB Removes first password check.
0x4040DF 0x02 JMP 0040412D Patch for OutputDebugStringA/

GetLastError trick.
0x40416F 0x02 UD2 Int 2D changed to UD2 for

better exception handling
under debugger.

0x4041F4 0x02 JMP 00404209 Patch for another time-based
check.

Objective 1: Reverse Engineering a Fromula:Reverse engineering a formula was as usual very challenging task. Locating
function F() wasn't hard, searching for fyl2x FPU instruction gave me only one result:
0040140D call _F_ ;call 0x00401070
00401412 fldlg2
00401414 add esp, 18h
00401417 fxch st(1)
0040141E fyl2xThe main part of formula is placed in the SEH handler that should be triggered by Int
2D command. Function F() takes three double parameters: p1, p2 and p3. There are three global values:

Address Name Value
0x004051C0 G1 1000000000.0
0x004051E8 G2 299792458.0
0x004051D8 G3 0.25There is also one value constructed from the hash of the body of F function:

12

d1 = 3.464101615137754

Function F() calls two other functions which are well defined operations on complex numbers: complex_multiply at 0x00401000 and complex_divide at 0x00401030. The initial calculations are rather easy, at first I've defined complex value A:
A= 1

G2
p2∗G1

∗d1∗p1∗p3 ; 0= p2∗G1∗d1∗ p1∗p3G2
; 0

Next I've defined sequence of complex numbers:
an={a0=0,1a1=1,0

an=
2∗n−1∗an−1

A −an−2 , for n2}
Using sequence an I've defined sequence bn :
bn=

−1n∗2∗n1
n∗an1

2 −A∗an1∗anNow I can define function f:
f A= ∑

n=0, n∈ℕ

∞

bn=  x , y

In the given application, summation of bn is done until precision will reach 1.0e-12. f(A) produces complex value that is converted to real value C through equation:
C=x2 y2∗ p12∗ p3∗G3∗d1

Value C is returned from function F.
Time to break: - Overall time: 2 days - Breaking password and objective 2: 3 to 4 hours - Reverse engineering a formula: 8 to 10 hours

Tools used: - IDA Pro Advanced – overall static analysis of executable - OllyDbg 1.10 with Olly Advanced plug-in – dynamic analysis and patching executable
13

 - Notepad – quick notes and ideas to check - Calc – irreplaceable tool for any calculations
Conclusion:I must say that complication of mathematical formula surprised me, but at all everything can be reversed. Anti-debug tricks were rather usual and well known, except this OutputDebugStringA/GetLastError, which wasn't good idea, because it not worked as it should. Partial encryption and decryption of blocks of code at runtime is a step in good direction, but commercial packers used such technique few years ago, so it is nothing new, and nothing hard to bypass. Actually the best solution to protect code from reverse engineering is morphing or virtualizing code like for example in Themida. Calculating checksums and searching for breakpoints at runtime is good idea, especially if application don't report anything to the attacker, but silently modify execution of the program. Such tricks are usually very hard to track in big commercial applications. Using passwords to run application is also good choice, but it has sense only if those passwords are crucial for application execution (or decryption), it is of course understandable that it doesn't make sense in challenge that is supposed to be beaten. Anyhow, I'm greatly appreciated that I've occasion to solve Hacker Challenge once again and I'm waiting for the next challenge.

14

